ABOUT THE TECHNOLOGY

METAL INJECTION MOLDING

Precision. Complexity. Scaled production.

Metal Injection Molding (MIM) is a manufacturing process that combines the design freedom of plastic injection molding with the strength and performance of metal. Fine metal powders are mixed with a binder to form a feedstock that is injected into molds, then debound and sintered to create high-density, high-precision parts.

How It Works

Fine metal powder is blended with a thermoplastic binder to form a moldable feedstock

The feedstock is injected into a mold cavity, just like in plastic injection molding

The "green part" is cooled and ejected, then undergoes a debinding process to remove the binder

The remaining part is sintered to fuse the metal particles and achieve full density and strength

Optional secondary operations (e.g., surface finishing, heat treating) may follow

If it's small, strong, and shaped in a complicated way it might be made using Metal Injection Molding.

Want to know more? Visit pressedmaterials.org or contact our Regional Innovation Officer, John Williams at jcw5919@psu.edu

Features and Benefits

- Ideal for small, complex, high-volume parts that require precision
- Extends the capabilities of powder-based manufacturing into consumer, medical, and electronics sectors
- Uses fine powders, often similar or identical to those used in other pressed materials applications
- Complements press-and-sinter and additive manufacturing—not a competitor, but a companion process

Example Applications

- Orthodontic brackets and surgical tools
- Smartphone components and wearable tech hardware

- Firearm components (triggers, safety levers)
- Automotive sensors and locking mechanisms
 - Watch cases and other micro-mechanical housings

Key Advantages Over Other Processes

MIM Offers	Compared To
Exceptional design freedom	Geometric limits in press-and-sinter
High production rates	Slower, more manual machining
Fine detail and tight tolerances	Less precision in casting
Excellent surface finish	More post-processing needed in PM
Miniaturization of parts	Not feasible with traditional forming

Real-World Innovation: Surgical Spine Instrument

A complex surgical instrument component with projecting posts was originally machined, but high costs and volume demands required a new approach. By shifting to metal injection molding (MIM) and applying design-formanufacturing principles, the part was optimized for production, cutting costs and enabling high-volume output with consistent quality.

Future Potential

North Central Pennsylvania manufacturers can expand into high-growth markets such as aerospace, defense, medtech, and advanced electronics—positioning the region as a trusted source for high-value, next-generation technologies.

